C8	$a_{n+1} = pa_n + qn^2 + rn + s$ 型の漸化式
Q8	$a_1=1$, $a_{n+1}=2a_n+n^2$ で定められる数列 $\{a_n\}$ において,
	整式 $f(x)$ が存在することを示し、数列 $\{a_n\}$ の一般項を求
	めよ。
A8	$f(x) = px^2 + qx + r(p \neq 0)$ とおいて、係数を比較すること
	によって解いていきます。
	①を変形すると,
	$a_{n+1} = 2a_n + f(n+1) - 2f(n)$
	ここで、
	$f(n+1) - 2f(n)$ $= p(n+1)^{2} + q(n+1) + r - 2(pn^{2} + qn + r)$ $= pn^{2} + 2pn + p + qn + q + r - 2pn^{2} - 2qn - 2r$ $= -pn^{2} + (2p - q)n + p + q - r$
	$a_{n+1}=2a_n+n^2$ と比較して、
	-p = 1, $2p - q = 0$, $p + q - r = 0$
	順々に、 $p = -1$, $q = -2$, $r = -3$ と求まるから、
	$f(x) = -x^2 - 2x - 3$ とおくと、これは①を満たす。
	$b_n = a_n - f(n)$ とおくと, $b_1 = a_1 - f(1) = 7$ であり,
	$b_{n+1} = 2b_n$

数列 $\{b_n\}$ は初項 7、公比 2 の等比数列であるから、

$$b_n = 7 \cdot 2^{n-1}$$
 これより, $a_n - f(n) = 7 \cdot 2^{n-1}$ よって, $a_n = f(n) + 7 \cdot 2^{n-1} = -n^2 - 2n - 3 + 7 \cdot 2^{n-1}$ 答え $a_n = -n^2 - 2n - 3 + 7 \cdot 2^{n-1}$ ($n = 1$, $n = 1$, $n = 1$)